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A B S T R A C T

Systematic monitoring of species across their geographic ranges is a critical part of conservation but it is re-
source-intensive, costly, and difficult to organize and maintain in the long-term. Large-scale community science
programs like eBird may improve our ability to monitor bird populations, particularly in tropical regions where
formal studies are lacking. Here, we estimated population trends for nearly 9000 bird species using global eBird
birdwatching data and compared our trends to the population trends designated by BirdLife International. We
calculated the rate of agreement between eBird and BirdLife trends and examined the effects of latitudinal
affiliation, threat status, number of eBird checklists, eBird trend, BirdLife trend and BirdLife trend derivation on
the rate of agreement. We also used a randomization approach to compare observed rates of agreement with the
rates of agreement expected by chance alone. We show that the rate of agreement was marginally better than
expected by chance and improved significantly for temperate region species of Least Concern with more
checklists, and species that eBird or BirdLife identified as increasing. Our results suggest that eBird data are not
currently adequate for monitoring populations of the majority of the world's bird species, especially in the
developing world where systematic surveys are essential. Increased local participation in community science
initiatives like eBird may improve our ability to effectively monitor species. Furthermore, it is important to
assess the accuracy of BirdLife trends and the manner in which they are derived, especially for species where
BirdLife and eBird data trends disagree.

1. Introduction

Systematic long-term monitoring of species' populations is a critical
component of their conservation (Ralph et al., 1995; Sauer et al., 2014).
Accurate population trends are crucial for identifying species of concern
as well as measuring the efficacy of conservation programs (Kleiman
et al., 2000; Tear et al., 1995). Monitoring a species across its geo-
graphic range can be difficult and resource intensive, but is essential for
measuring global trends and taking the necessary conservation mea-
sures. Birds are important ecological indicators that are critical to many
environmental monitoring schemes, bidiversity assessments and con-
servation decision-making (Kati and Şekercioğlu, 2006). Recent large
declines in bird abundance, particularly among common and wide-
spread birds (Inger et al., 2015; Rosenberg et al., 2019), can also impact
natural ecosystems when avian ecosystem functions such as seed dis-
persal, pollination, scavenging, and predation are reduced (Şekercioğlu,
2006). These declines can have economic costs because some birds help

control pests and are a key component of the ecotourism industry
(Şekercioğlu, 2002, 2006).

In a few countries, birds are monitored using government-co-
ordinated surveys that produce reliable national-level population trends
(Sauer et al., 2014), most notably the Breeding Bird Surveys in North
America (United States Geological Survey), Europe (European Bird
Census Council) and the United Kingdom (British Trust for Or-
nithology). However, formal surveys such as these are often lacking in
tropical developing nations due to the resources required (Seak et al.,
2012). This is especially concerning because these regions harbor the
majority of the world's bird species (del Hoyo et al., 2019), many of
which are specialized species with higher risk of extinction
(Şekercioğlu, 2011). Opportunistic community science can be used to
monitor species on a broad scale for comparatively little resource in-
vestment (Abolafya et al., 2013; Boersch-Supan et al., 2019; Bonney
et al., 2009; Fink et al., 2020; Horns et al., 2018; Silvertown, 2009), and
therefore has the potential to fill in some of these data gaps. In
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particular, semi-structured community science data have been used
successfully to compare bird population trends with estimates from
formal breeding bird surveys (Boersch-Supan et al., 2019; Horns et al.,
2018). However, community science can suffer from poor data quality,
high inter-observer variation, and spatial heterogeneity (Isaac et al.,
2014; Kamp et al., 2016; Kelling et al., 2015; La Sorte and Somveille,
2020), and these issues need to be addressed before using a community
science scheme for assessing population changes (Aceves-Bueno et al.,
2017; Bayraktarov et al., 2019; Fink et al., 2020).

eBird is a community science database that contains a large and
growing volume of bird count data (hereafter “checklists” or “lists”;
Sullivan et al., 2009). With over 800 million submitted observations
from around the world, eBird has the potential to be a substantial re-
source for monitoring birds on a large scale. eBird has been used to
monitor bird migration (Fournier et al., 2017; Horton et al., 2018),
geographic occurrence (Braun and Wann, 2017; Fink et al., 2020), di-
versity (Callaghan and Gawlik, 2015; La Sorte et al., 2014), and po-
pulation trends (Boersch-Supan et al., 2019; Clark, 2017; Fink et al.,
2020; Horns et al., 2018; Walker and Taylor, 2017). Multiple studies
have shown that population trend estimates based on eBird data can
reflect trends estimated by formal surveys for focal species (Clark,
2017; Fink et al., 2020), for all species within important conservation
regions (Walker and Taylor, 2017), and even for all species at large,
continental scales (Horns et al., 2018). However, previous studies ver-
ifying population trends based on eBird data have been largely re-
stricted to areas such as North America where there are high volumes of
eBird data and reliable structured surveys with which to compare eBird
results. Expanding these analyses to a global scale is challenging when
there is insufficient information about the species to make accurate
trend estimates for comparison.

To address the efficacy of community science to monitor species at
the global scale, we used eBird data to estimate world-wide population
trends for nearly 9000 bird species over the past 20 years. We then
compared our results with the trend estimates made by BirdLife
International (2019). BirdLife International (BirdLife) is a world-wide
partnership of conservation organizations that seeks to collect in-
formation on the threats to global avifauna and to enact conservation
action. BirdLife amasses a diverse range of data sources in order to
make categorical estimates of population trends for the majority of the
world's bird species, classifying each as “increasing”, “stable”, or “de-
creasing” (Birdlife International, 2019). Where available, species trends
are based on empirical survey data such as breeding bird surveys, bird
atlas surveys, or targeted species-specific surveys. For most species
without empirical data, trends may be based on expert opinion or on
indirect evidence of population-level threats (i.e. extensive habitat loss
known to be occurring with the species' range) and public input is en-
couraged in making these designations (BirdLife's Globally Threatened
Bird Forums; Birdlife International, 2019).

In order to assess the accuracy of eBird population trends, we
compared the rate of agreement between BirdLife and eBird trends and
how agreement varied with increasing volumes of eBird data, IUCN
threat level, the latitudinal affiliation of the species (whether the spe-
cies was primarily tropical, temperate, or found in both regions –
“cosmopolitan”), and the formal BirdLife trend assessment and deri-
vation for the species (whether the species is estimated to be increasing,
stable, or decreasing). We predicted that concordance would be highest
for cosmopolitan species, which by definition have large global dis-
tributions and thus a higher chance of occurrence in eBird data, and
lowest for species restricted to the tropics where eBird use is less pre-
valent and formal surveys are less numerous (Horns et al., 2018; La
Sorte and Somveille, 2020; Şekercioğlu, 2012). We further predicted
that species with decreasing eBird trends would show a higher rate of
agreement than species estimated to be stable or increasing. Because
the ability of birdwatchers to locate birds is steadily increasing through
better information, the growing use of bird calls (playback), and em-
ploying professional guides and tour companies, species with a negative

eBird trend are likely to be truly declining. Our findings will help assess
the utility of community science data to act as a coarse-scale indicator
of changes in bird populations over large geographic areas where more
traditional survey data are unavailable.

2. Methods

We downloaded the complete eBird world data set on February 18,
2020 (ebd_relJan-2020). This provided data through January 2020.

2.1. Data selection

We first determined the number of species each checklist reported
(unique checklists were identified on the basis of the “Sampling Event
Identifier”), and eliminated any list with fewer than four species, as
these can represent a targeted search for a specific species and can
confound results (Szabo et al., 2010). We also eliminated any duplicate
checklists (identical checklists shared between two or more people
birding together) on the basis of the “Group Identifier” and randomly
retained one checklist per group. Next, we removed lists prior to 2000
in order to focus on the 20 most recent years of data. Although eBird
launched in 2002, users have been able to submit checklists from prior
years. Observers on eBird are required to state whether their list in-
cluded all bird species detected, so we also eliminated any list defined
by users as incomplete. In order to use data from sites that would be
comparable over time, we restricted the locality type to eBird “hot-
spots”, thus removing personal locations that may only be used once.
We also restricted the protocol type to “traveling” and “stationary”, the
two most common protocols with the most rigorous effort data. For
stationary checklists, we fixed the distance traveled at 0 km. Finally,
following eBird “best practices” (Johnston et al., 2019), we removed
checklists that took place over >5 h, that traveled distances of >5 km,
and that involved >10 observers. Additionally, we removed any
checklists lacking data for the distance, duration, and number of ob-
servers covariates. Our final dataset contained >210 million records.

2.2. eBird trend modeling

We first removed all records not identified to species level, in-
cluding hybrids and domesticates. To estimate the population trend for
each species, checklists were only used if they came from eBird hotspots
(based on “Locality ID”) with at least one record of the focal species, a
technique which has been shown to produce high concordance with
formal breeding surveys (Horns et al., 2018). Each list was assigned a 1
or 0 depending on whether or not it recorded the focal species. Pre-
sence/absence data were used instead of abundance data because many
eBird lists that fail to report abundance would have to be excluded and
previous studies have shown that abundance and occurrence rate in
eBird data are tightly correlated (Horns et al., 2018; Walker and Taylor,
2017). Because of potential issues with small sample sizes, we removed
species with fewer than 50 possible checklists and fewer than ten en-
counters over those checklists (Fink et al., 2020).

We ran a multiple logistic regression model for each of the re-
maining 8883 species. For each species, presence/absence data (en-
counter probability) were modeled as a function of year, number of
species recorded in the checklist, number of observers, distance tra-
veled, and duration. The number of species on each checklist was in-
cluded as part of list-length analysis which uses the number of species
detected to control for inter-observer variation in skill and effort
(Boersch-Supan et al., 2019; Horns et al., 2018; Kelling et al., 2015;
Szabo et al., 2010). For each eBird trend model, we extracted the model
coefficients and p-values (Appendix 1), and calculated Cox & Snell's
index and Nagelkerke's index, two pseudo-R2 measures of model fit for
logistic regressions (Cox and Snell, 1989; Nagelkerke, 1991). For ex-
amples of these logistic regressions see Fig. 1. The volume of eBird data
has increased exponentially over time (Fig. 2) and thus the ability of
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these data to estimate population trends has likely improved over time.
To address this, we re-ran the eBird trend models over two shorter
temporal windows: ten years (2010–2019) and five years (2015–2019).
We compared our results for these shorter windows with our main re-
sults for the 20-year period (2000–2019).

2.3. Comparing eBird trends versus BirdLife International trends

Of the 8883 species with sufficient eBird data to make trend estimates
(≥50 checklists, ≥10 detections), 8121 have been designated trend es-
timates by BirdLife International. Because numerical abundance data
across years is unavailable for most species, BirdLife only provides cate-
gorical estimates, defining all species as either “decreasing”, “stable”, or
“increasing”. BirdLife trend estimates are also accompanied by their de-
rivation, classified as “estimated”, “inferred”, “observed”, or “suspected”.
We hypothesized that the rates of agreement would be higher for esti-
mated and observed trends compared to inferred and suspected trends
which are more indirect approaches (Birdlife International, 2019). We
used these derivation categories in the subsequent analyses.

Both magnitude and uncertainty are important components in es-
tablishing whether a population is undergoing significant directional
change. Therefore, we considered eBird trends stable if year did not
have a significant effect on the encounter probability or if the absolute
value of the magnitude of the trend was under 1%/yr (Van Strien et al.,
2001). We used the coefficients from the model outputs to estimate the

Fig. 1. Examples of logistic regressions conducted on four species with varying results. Trend lines are shown in black with 95% confidence intervals in red. House
Wren (Troglodytes aedon) increased significantly at a rate of 3.8% per year resulting in the “increasing” designation. Sharp-shinned Hawk (Accipiter striatus) decreased
significantly at a rate of 3.7% per year resulting in the “decreasing” designation. Yellow-billed Loon increased at a rate of 1.2% per year but this was not significant,
resulting in the “stable” designation. Finally, the trend for Black-crowned Night-heron was both below 1% per year and non-significant, resulting in the “stable”
designation.

Fig. 2. The number of eBird checklists between 2000 and 2019 used in eBird
population trend analyses after data filtering. The curve shows the fitted values
from a Poisson Generalized Linear Model.
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magnitude of the trend by calculating the percentage change in en-
counter probability from year to year. Species with significant year
effects and trend magnitudes >|1%/yr| were considered decreasing or
increasing depending on the directional effect of year (for examples see
Fig. 1). We then grouped all species by their latitudinal affiliation,
defining each species as primarily found in tropical regions (within the
tropics of Cancer and Capricorn), temperate regions (outside of the
tropics), or both (cosmopolitan). Range data came from a global bird
ecology database (see Şekercioğlu et al., 2019 for details) updated with
recent information on the bird species analyzed (del Hoyo et al., 2019).

We calculated the overall rate of agreement as the percentage of
species whose eBird trend and BirdLife trend matched. We ran a mul-
tiple logistic regression to determine the factors influencing the rates of
trend agreement. Agreement (1 or 0) was used as the dependent vari-
able and latitudinal affiliation, IUCN threat status, and the log number
of eBird lists from the species' ranges were included as fixed effects. In
addition, we included BirdLife trend and derivation, and eBird trend as
covariates. The BirdLife trend factor allowed us to test the ability of
eBird to predict BirdLife assessments. The eBird trend factor allowed us
to test the likelihood that a species with a given trend estimate from
eBird will agree with BirdLife. Finally, we included Nagelkerke's index
(pseudo-R2) to determine whether the rate of agreement increased with
the amount of variation explained by the eBird trend model. We used
likelihood-ratio tests (LRT) to determine the significance of each vari-
able and removed any that were not significant.

2.4. Randomization

When calculating the rates of agreement within categories, it is
important to consider the rate of agreement that would occur by chance
alone, as the number of species that fall into different categories is not
uniform. To do this, we randomized the eBird trend labels across spe-
cies, keeping the total number in each category (“increased”, “de-
creased” and “stable”) constant. We repeated this process 500 times and
calculated the mean and 95% confidence intervals for each category
(BirdLife trend, BirdLife derivation, eBird trend, latitudinal affiliation
and threat status). We compared the observed rates of agreement with

the confidence intervals on the means from randomization. An observed
rate was greater or less than expected by chance if it was outside the
confidence intervals.

All analyses were performed in R version 3.6.1 (R Core Team,
2020).

3. Results

Of the 8121 species with trend estimates from both eBird and
BirdLife, BirdLife identified 624 (7.7%) as increasing, 3616 (44.5%) as
stable, and 3881 (47.8%) as decreasing. These proportions contrast
with the eBird trends of 1974 (24.3%) as increasing, 4942 (60.9%) as
stable, and 1205 (14.8%) as decreasing. This comparison suggests that
eBird produces trends that are, on average, more positive than BirdLife.
Overall, only 37.8% of the bird species had population trends that
agreed between these data sources (Fig. 3a) and this was slightly higher
than expected by chance (36.1% ± 0.04CI). In the logistic model,
Nagelkerke's index did not have a significant effect on the rate of
agreement (LRT: χ2 = 0.05, p = 0.82) and so this covariate was
dropped from the model. Replacing Nagelkerke's index with Cox &
Snell's index as an alternative pseudo-R2 was also not significant
(χ2 = 0.41, p= 0.52). All remaining covariates were significant and so
retained.

Species found only in the tropics had lower rates of agreement
(37.7%) than temperate species (39.7%) and similar rates of agreement
to cosmopolitan species (37.2%; Fig. 3b; χ2 = 8.54, p= 0.014). For all
latitudinal affiliations, the observed rate of agreement was higher than
expected by chance, and this was particularly the case for temperate
species (Fig. 3b). Species of Least Concern showed the highest agree-
ment rate (41.8%) followed by Critically Endangered species (27.4%;
χ2 = 13.26, p = 0.01). Species in the intermediate threat categories
showed low levels of agreement (17–20%). The observed rate of
agreement was higher than expected by chance for Least Concern,
Vulnerable, and Critically Endangered species and lower than expected
for Near Threatened and Endangered species (Fig. 3c). In particular, the
rates of agreement were noticeably higher than expected for Least
Concern and Critically Endangered species.

Fig. 3. The (a) overall rate of agreement and the effect of (b) latitudinal affiliation and (c) IUCN threat status on the rate of agreement in population trend estimates
between eBird and BirdLife International for three different temporal windows. Numbers above bars represent the total number of species in each category. Dashed
lines represent the rate of agreement expected by chance alone. Confidence intervals were so small as to not be visible in the figure. Cosmopolitan species are found
both in the tropics (between the tropics of Cancer and Capricorn) and in temperate regions. LC = Least Concern, NT = Near Threatened, VU = Vulnerable,
EN = Endangered, CR = Critically Endangered.

M.H.C. Neate-Clegg, et al. Biological Conservation 248 (2020) 108653

4



For eBird trends (χ2 = 998.05, p < 0.0001) the highest rate of
agreement was for decreasing species (48.5%; Table 1) but this was
closely followed by stable species (45.0%) with the rate of agreement
for increasing species being much lower (13.2%). For all three cate-
gories, observed rates of agreement were higher than expected by
chance (Fig. 4a). However, while the rates of agreement were only
marginally higher than expected by chance for stable and decreasing
species, the rate of agreement was much higher than expected for in-
creasing species. The log number of eBird checklists had a positive

effect on the rate of agreement (Fig. 4b; χ2 = 4.75, p = 0.029). For
BirdLife trends (χ2 = 1591.1, p < 0.0001), the highest rate of agree-
ment was for stable species (61.5%; Table 1), followed by increasing
species (41.8%) and decreasing species (15.0%). Again, the observed
rates of agreement were higher than expected by chance for all cate-
gories (Fig. 4c) but highest for increasing species. These results suggest
that BirdLife and eBird tend to agree more when bird populations are
increasing. Finally, the rate of agreement was highest for “suspected”
BirdLife trends (39.7%), followed by “estimated” trends (36.4%), “ob-
served” trends (26.3%), and “inferred” trends (12.0%; χ2 = 22.23,
p < 0.0001). Compared to chance, the rate of agreement was much
higher for estimated trends, marginally higher for observed and sus-
pected trends, and lower for inferred trends (Fig. 4d).

Restricting the temporal window to 2010–2019 had little effect on
the rate of agreement, but restricting the window to 2015–2019 im-
proved the rate of agreement (Fig. 3a). This result, however, was not
consistent across categories of species (Fig. 3 and Fig. 4). In many cases,
the difference between the observed rate of agreement and the expected
rate of agreement was highest for the 2010–2019 (intermediate) tem-
poral window, but the magnitudes of these differences were relatively
small.

Table 1
A comparison of the trend estimates between those produced by BirdLife
International (rows) and those estimated from global eBird data (columns).
Bold numbers are those that agree in trend designation.

eBird trend

Increasing Stable Decreasing Total

BirdLife Trend Increasing 261 276 87 624
Stable 857 2225 534 3616
Decreasing 856 2441 584 3881
Total 1974 4942 1205 8121

Fig. 4. The effect of (a) eBird trend, (b) number of checklists, (c) BirdLife trend, and (d) BirdLife trend derivation on the rate of agreement in population trend
estimates between eBird and BirdLife International for three different temporal windows. Numbers above bars represent the total number of species in each category.
Dashed lines represent the rate of agreement expected by chance alone. Confidence intervals were so small as to not be visible in the figure.
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4. Discussion

Across the global avifauna, the rate of agreement between population
trends based on eBird community science data and those based on tra-
ditional conservation assessments by BirdLife International was low
(37.8%) but higher than expected by chance (Fig. 3a). eBird data showed
increasing trends in more species than did the BirdLife data, suggesting
that community science, at least for birds, may provide overly optimistic
estimates of population trends. It is reassuring, however, that the rates of
agreement for increasing species were considerably greater than ex-
pected by chance for both BirdLife and eBird trends. This suggests that
trends based on eBird data could be a good way of detecting birds that
are increasing in response to anthropogenic change or conservation ac-
tion. Similar to an analysis of North American eBird data (Horns et al.,
2018), the rate of agreement was positively associated with the number
of eBird checklists for a species. This result highlights the importance of
promoting world-wide participation in community science programs at
the local level, especially in developing and tropical countries (La Sorte
and Somveille, 2020), in order to increase the volume of data and the
probability of detecting accurate trend directions.

The tendency of eBird data to show more positive population trends
is likely to be an artifact of increases in focused searches for rare,
threatened and/or endemic species that make up the majority of the
“target” species birders seek on birdwatching trips. Increased targeting
may also be linked with intensive but localized conservation efforts that
attract birdwatchers. A converse mechanism may be underlying the
higher rate of agreement for birds found in temperate areas (Fig. 3b).
The use of eBird is much higher in North America and Europe than in
many tropical developing nations (La Sorte and Somveille, 2020), and
many of the participants in temperate, developed countries are engaged
in more general birdwatching rather than targeted birding trips, with
the resulting data providing a more accurate representation of the local
bird communities. Similarly, the rate of agreement was highest for
species of Least Concern (Fig. 3c), possibly reflecting the dispropor-
tionate access that people have to common species versus the sig-
nificant effort birdwatchers spend to find globally threatened species.
However, it is noteworthy that the rate of agreement was much greater
than expected by chance for Critically Endangered species. This result
could be an artifact of a small sample size or it could indicate that, for
the most endangered species, even targeted searching produces de-
clining eBird trends for a group where 92% of the species (for which we
had sufficient data) are declining according to BirdLife.

Given the volume of eBird data and the focus of millions of bird-
watchers on finding even the rarest bird species on a regular basis, we
predicted that bird species with decreasing eBird trends would have
significantly higher agreement with BirdLife population trends.
Traveling birdwatchers and professional bird tour companies in-
tensively focus on finding rare, range-restricted, endemic, threatened
and near threatened species. If, despite this effort, rare species are being
recorded less frequently in eBird, these species are likely to be de-
clining. Contrary to our prediction, the rate of agreement for species
with decreasing eBird trends was similar to the rate expected by chance
(Table 1, Fig. 4a) as was the rate of agreement for species with de-
creasing BirdLife trends (Table 1, Fig. 4c). These results raise two im-
portant considerations for monitoring declining species with commu-
nity science. First, bird species showing declining trends according to
both eBird and BirdLife should be a priority of conservation assess-
ments, especially in understudied tropical regions (Şekercioğlu, 2012).
However, likely due to the same increase in effort, actual declines in
many species, particularly in common species (Rosenberg et al., 2019),
may not emerge as declining trends based on eBird community science.

An important caveat of these results is that we assumed the BirdLife
trends to be correct and that a disagreement with the eBird trend was
considered a shortcoming of the eBird data in detecting the actual trend.
However, while the BirdLife trends are the best available global assess-
ments we have for many bird species, they are not infallible. Many

tropical species may lack the data for biologists to accurately estimate
population trends. In addition, different species are assessed with dif-
ferent techniques in different habitats. It is therefore difficult in some
instances to attribute the disagreement rates to either BirdLife or eBird
data. Indeed, we found that the rate of agreement was much higher than
expected for species whose BirdLife trends were estimated or observed
compared to the inferred or suspected trends (Fig. 4d), indicating that
more accurate population trend estimates by scientists are required for
higher rates of agreement. Thus, alongside increased community science
effort, there is a need for repeatable methods to establish the biodiversity
baselines against which future trends will be calculated and community
science data can be compared. Given the disparity in data sources and
the low levels of agreement, we cannot say whether increasing eBird data
alone will be sufficient (Stegman et al., 2017).

Narrowing the temporal window to the past five years did increase
the observed rate of agreement above the rate of agreement due to
chance, but this trend was not consistent across the various categories
of species (Figs. 3 and 4). Many categories (e.g. cosmopolitan and
temperate species, Least Concern, Vulnerable and Endangered species,
increasing and stable species) actually showed the greatest difference
between observed and expected rates of agreement for the intermediate
temporal window (2010–2019). This may reflect a trade-off between
having more data per year and having more years of data over which to
estimate trends. Rates of agreement were highest for species with more
checklists, suggesting that greater use of eBird and other community
science programs will increase our ability to estimate trends. Bird-
watchers should also aim to increase the quality of their data by tar-
geting under-surveyed “coldspots” in addition to popular “hotspots” in
order to increase spatial coverage (Callaghan et al., 2019), and by in-
cluding as many data and meta-data as possible on their checklists to
increase the number of checklists that can be used in effort-controlled
occurrence and abundance estimation analyses (Johnston et al., 2019).
In the tropics, where bird guides and tours are prevalent, we also en-
courage bird guides to submit complete checklists where possible, even
when the target species are not located or in the off-season when
tourists are absent. Finally, as new techniques for modeling community
science data emerge (Callaghan et al., 2019; Fink et al., 2020), our
ability to accurately model population trends will likely increase. For
now, we are limited by computing power and data availability in our
ability to implement complex models for nearly 11,000 bird species and
prudency prioritizes power over model complexity (Fink et al., 2020).

5. Conclusions

Community science may have the potential to provide critical in-
formation on the patterns of abundance and distributions of organisms
over geographic and temporal scales beyond the scope of traditional
scientific studies (Boersch-Supan et al., 2019; Fink et al., 2020; Horns
et al., 2018). The use of community science in conservation is rapidly
expanding, as is the need to validate the results of such programs. Our
results suggest that eBird data are marginally better than chance at
predicting BirdLife trends, meaning that eBird data are not currently
adequate for monitoring populations of the majority of the world's bird
species, especially in the biodiverse developing world where systematic
surveys are essential. However, eBird data appear to be good at detecting
increasing populations. Additionally, species showing both eBird and
BirdLife declines, especially little-known bird species in understudied
tropical regions, should be a priority of conservation assessments
(Şekercioğlu, 2012). Our results further suggest that increases in local
participation in community science programs should increase these
programs' efficacy in monitoring populations. Community science in-
itiatives like eBird are becoming increasingly important for biodiversity
assessments and further community science participation is critical in the
developing world where most of the world's biodiversity resides.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.biocon.2020.108653.
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